
Modifying data via the DbContext

DbContext SaveChanges always starts with transaction and

will rollback if any transaction failed if not it will commit this is

default behavior

The approach that you adopt to modifying entities depends on whether the context is currently

tracking the entity being modified or not.

In the following example, the entity is obtained by the context, so the context begins tracking it

immediately. When you alter property values on a tracked entity, the context changes

the EntityState for the entity to Modified and the ChangeTracker records the old property

values and the new property values. When SaveChanges is called, an UPDATE statement is

generated and executed by the database.

1. var author = context.Authors.First(a => a.AuthorId == 1);
2. author.FirstName = "Bill";
3. context.SaveChanges();

Since the ChangeTracker tracks which properties have been modified, the context will

issue a SQL statement that updates only those properties that were changed:

1. exec sp_executesql N'SET NOCOUNT ON;
2. UPDATE [Authors] SET [FirstName] = @p0
3. WHERE [AuthorId] = @p1;
4. SELECT @@ROWCOUNT;
5. ',N'@p1 int,@p0 nvarchar(4000)',@p1=1,@p0=N'Bill'

Disconnected Scenario link

In a disconnected scenario such as an ASP.NET application, changes to an existing entity's

property values can take place in a controller or service method, well away from the context. In

these cases, the context needs to be informed that the entity is in a modified state. This can be

achieved in several ways: setting the EntityState for the entity explicitly; using

the DbContext.Update method (which is new in EF Core); using the DbContext.Attach method and

then "walking the object graph" to set the state of individual properties within the graph

explicitly.

Setting EntityState link

You can set the EntityState of an entity via the EntityEntry.State property, which is made

available by the DbContext.Entry method.

1. public void Save(Author author)
2. {
3. context.Entry(author).State = EntityState.Modified;
4. context.SaveChanges();
5. }

This approach will result in just the author entity being assigned the Modified state. Any related

objects will not be tracked. Since the ChangeTracker is unaware of which properties were

modified, the context will issue an SQL statement updating all property values (apart from the

primary key value).

DbContext Update link

The DbContext class provides Update and UpdateRange methods for working with individual or

multiple entities.

1. public void Save(Author author)
2. {
3. context.Update(author);
4. context.SaveChanges();
5. }

As with setting the entity's State, this method results in the entity being tracked by the context

as Modified. Once again, the context doesn't have any way of identifying which property values

have been changed, and will generate SQL to update all properties. Where this method differs

from explicitly setting the State property, is in the fact that the context will begin tracking any

related entities (such as a collection of books in this example) in the Modified state, resulting

in UPDATE statements being generated for each of them. If the related entity doesn't have a key

value assigned, it will be marked as Added, and an INSERT statement will be generated.

Attach link

When you use the Attach method on an entity, it's state will be set to Unchanged, which will result

in no database commands being generated at all. All other reachable entities with key values

defined will also be set to Unchanged. Those without key values will be marked as Added.

However, now that the entity is being tracked by the context, you can inform the context which

properties were modified so that the correct SQL to update just those values is generated:

1. var context = new TestContext();
2. var author = new Author {
3. AuthorId = 1,
4. FirstName = "William",
5. LastName = "Shakespeare"
6. };
7. author.Books.Add(new Book {BookId = 1, Title = "Othello" });
8.
9. context.Attach(author);
10. context.Entry(author).Property("FirstName").IsModified = true;
11. context.SaveChanges();

The code above will result in the author entity being marked as Modified, and SQL being

generated to update just the FirstName property:

1. exec sp_executesql N'SET NOCOUNT ON;
2. UPDATE [Authors] SET [FirstName] = @p0
3. WHERE [AuthorId] = @p1;
4. SELECT @@ROWCOUNT;
5. ',N'@p1 int,@p0 nvarchar(4000)',@p1=1,@p0=N'William'

Untracked

Tracked

Update samo smenetoto property ke se update

Tracking is expensive

 ChangeTracker.QueryTrackingBehavior = QueryTrackingBehavior.NoTracking;
//will not track
 ChangeTracker.QueryTrackingBehavior = QueryTrackingBehavior.TrackAll;

//default behavior

call it just before savechanges

and wirite appDbContext.ChangeTracker.Entries()

to add item to watch in Watch1

An Entity does not have state and are not tracked when retrived from front-
end app
The ChangeTracker class in Entity Framework Core starts tracking of all the entities

as soon as it is retrieved using DbContext, until they go out of its scope.

EF API maintains the state of each entity during its lifetime. Each entity has
a state based on the operation performed on it via the context class. The
entity state represented by an enum System.Data.Entity.EntityState in EF

6 and Microsoft.EntityFrameworkCore.EntityState in EF Core with the

following values:
1. Added: The entity is marked as added.

2. Deleted: The entity is marked as deleted.

3. Modified: The entity has been modified.

4. Unchanged: The entity hasn’t been modified

5. Detached: The entity isn’t tracked.

The Context not only holds the reference to all the entity objects as soon as
retrieved from the database, but also keeps track of entity states and
maintains modifications made to the properties of the entity. This feature is
known as Change Tracking.

The change in entity state from the Unchanged to the Modified state is the only

state that's automatically handled by the context. All other changes must be made

explicitly using proper methods of DbContext or DbSet.

Let’s discuss different states.

Unchanged State

The property values of the entity have not been modified since it was retrieved from the
database. SaveChanges ignores this entity. This is the default state the entities will be in
when we perform the query and also whenever we attach an entity to the context using
Attach() method.

Detached State

Whenever we use Detach() method, the entity will be in the Detached state. Once the entity
is in the Detached state, it cannot be tracked by the ObjectContext. We have to use Attach()
method for the entity to be tracked by the ObjectContext. The Detached entity state
indicates that the entity is not being tracked by the context.

Added State

Whenever we add a new entity to the context using the AddObject() method, the state of the
entity will be in the Added state. Added entity state indicates that the entity exists in the
context, but does not exist in the database. DbContext generates the INSERT SQL query
and insert the data into the database when the saveChanges method is invoked. Once the
saveChanges are successful the state of the entity is changed to Unchanged

Modified State:
The entity will be in a Modified state whenever we modify scalar properties. The Modified
entity state indicates that the entity is modified but not updated in the database. It also
indicates that the entity exists in the database. The Dbcontext generates the update SQL
Query to remove the entity from the database. Once the saveChanges is successful the
state of the entity is changed to Unchanged
In the Connected environment, the Entity framework also keeps track of the properties that
have been modified. The Columns in the Update statement are set for only those columns,
whose values are modified.

Deleted State

Whenever we call the DeleteObject() method, the entity will be deleted from the context and
will be marked as “Deleted”. When the SaveChanges method is called, the corresponding
rows are deleted from the database. The Deleted entity state indicates that the entity is
marked for deletion, but not yet deleted from the database. It also indicates that the entity
exists in the database. The DbContext generates the delete SQL Query to remove the entity
from the database. The entity is removed from the context once the delete operation
succeeds after the saveChanges

errors

 //The instance of entity type 'Job' cannot be tracked because another instance
with the key value '{Id: 15}'
 //is already being tracked.When attaching existing entities, ensure that only
one entity instance
 //with a given key value is attached.
 //You don't need to call _dbSet.Update because as the error message
 //indicates the entity is already being tracked from your previous query.

because Update starts Tracking the entity again and many more on the images

is the dbContext is already tracking an entity and you try to track it again with the following images

if is tracked it does not track again FindAsync

you can see which are tracked the related of the current are not

	Modifying data via the DbContext
	DbContext SaveChanges always starts with transaction and will rollback if any transaction failed if not it will commit this is default behavior
	/
	Disconnected Scenario link
	Setting EntityState link
	DbContext Update link
	Attach link
	Unchanged State
	Detached State
	Added State
	Modified State:
	Deleted State

